T’au Island Has A Renewable Future

T’au Island Proves Micro Grid Futures

The island of T’au, which is situated in the South Pacific, is leading the way demonstrating to others that provision of almost 100% renewable energy power is possible. T’au island is in American Samoa and is part of the Manu’a Islands. The island is very remote from the nearest mainland – New Zealand is 2800 kilometres away for example. The island is tiny with an area of around 44 square kilometres (or around 17 square miles). Being volcanic, the island has very steep terrain and has a high point of around 900 metres.

T’au used to be powered exclusively by diesel generators which would burn around 109,500 gallons of the fossil fuel each year (see this Inside EV link). Many similar size islands are reliant upon diesel generators for their fuel needs. A big investment into renewable energy systems based upon solar panels has meant a shift away from diesel generators on T’au. As a result the island largely benefits from very low, if not zero, carbon emissions for its energy needs. The new solar panels and new micro grid using energy storage technology are located in the village of Faleasao. It is operated and maintained by the American Samoa Power Authority. A micro grid is a relatively new way of proving electricity on a much smaller scale than traditional large power station grid based systems. A micro grid is a distributed on-site generation system based upon small generation capacity. The original diesel generation on T’au is an example of micro grid generation but the new approach is to use more sustainable generation practices such as solar or other renewable energy.

The project description lists 1,410 kW of solar panels, equating to 5,328 panels, and 6,000 kWh of battery storage (using 60 Tesla Powerpacks). The storage technology can store energy for up to three days should the weather be cloudy. There are still backup diesel generators but these are for an emergency rather than the primary source of electrical power. The project was largely financed, 80%, from revenues paid by customers whilst the 20% remaining finance cam from the Department of Interior (see this American Samoa website).

Projects such as this one, which was highlighted on the Future Now blog, highlight what can be achieved for islands that are highly dependent upon external resources for their power needs. The project was implemented over twelve months and supplies power to a small population of around 600 people. There are additional positive benefits – the transport of the diesel will no longer be required and the associated carbon footprint of processing and distributing this hydro-carbon fuel will no longer be needed. The community should benefit from lower energy costs and the savings then should be re-invested into further benefits of the solar power. Although not planned for, this could include using electric transport for example or future expansion of the solar arrays to ensure greater resilience of the small island in the South Pacific.

Another recent example of the impact of this technology is the tourist development on Fiji highlighted in another Inside EV article. Islands are a place where trialling new technologies such as solar with storage will reduce dependencies upon external sources for fossil fuel based energy needs. Solar along with energy storage will not always be the answer but it could become a major source of clean energy on islands that are typically sunny.

Advertisements

About mappedit

Geographical practitioner with an interest in climate change, open mapping, sustainability, the transition movement, transport and many other things.
This entry was posted in Energy, Islands, PV, Renewable Energy, Solar, Sustainable Development. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s